Extensions 1→N→G→Q→1 with N=C22 and Q=C2×Dic9

Direct product G=N×Q with N=C22 and Q=C2×Dic9
dρLabelID
C23×Dic9288C2^3xDic9288,365

Semidirect products G=N:Q with N=C22 and Q=C2×Dic9
extensionφ:Q→Aut NdρLabelID
C22⋊(C2×Dic9) = C2×C6.S4φ: C2×Dic9/C2×C6S3 ⊆ Aut C2272C2^2:(C2xDic9)288,341
C222(C2×Dic9) = D4×Dic9φ: C2×Dic9/Dic9C2 ⊆ Aut C22144C2^2:2(C2xDic9)288,144
C223(C2×Dic9) = C2×C18.D4φ: C2×Dic9/C2×C18C2 ⊆ Aut C22144C2^2:3(C2xDic9)288,162

Non-split extensions G=N.Q with N=C22 and Q=C2×Dic9
extensionφ:Q→Aut NdρLabelID
C22.1(C2×Dic9) = D4.Dic9φ: C2×Dic9/Dic9C2 ⊆ Aut C221444C2^2.1(C2xDic9)288,158
C22.2(C2×Dic9) = C36.D4φ: C2×Dic9/C2×C18C2 ⊆ Aut C22724C2^2.2(C2xDic9)288,39
C22.3(C2×Dic9) = C232Dic9φ: C2×Dic9/C2×C18C2 ⊆ Aut C22724C2^2.3(C2xDic9)288,41
C22.4(C2×Dic9) = C36.9D4φ: C2×Dic9/C2×C18C2 ⊆ Aut C221444C2^2.4(C2xDic9)288,42
C22.5(C2×Dic9) = C23.26D18φ: C2×Dic9/C2×C18C2 ⊆ Aut C22144C2^2.5(C2xDic9)288,136
C22.6(C2×Dic9) = C4×C9⋊C8central extension (φ=1)288C2^2.6(C2xDic9)288,9
C22.7(C2×Dic9) = C42.D9central extension (φ=1)288C2^2.7(C2xDic9)288,10
C22.8(C2×Dic9) = C36⋊C8central extension (φ=1)288C2^2.8(C2xDic9)288,11
C22.9(C2×Dic9) = C36.55D4central extension (φ=1)144C2^2.9(C2xDic9)288,37
C22.10(C2×Dic9) = C18.C42central extension (φ=1)288C2^2.10(C2xDic9)288,38
C22.11(C2×Dic9) = C22×C9⋊C8central extension (φ=1)288C2^2.11(C2xDic9)288,130
C22.12(C2×Dic9) = C2×C4.Dic9central extension (φ=1)144C2^2.12(C2xDic9)288,131
C22.13(C2×Dic9) = C2×C4×Dic9central extension (φ=1)288C2^2.13(C2xDic9)288,132
C22.14(C2×Dic9) = C2×C4⋊Dic9central extension (φ=1)288C2^2.14(C2xDic9)288,135

׿
×
𝔽